Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2313971121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38662573

RESUMEN

There is increasing evidence that interactions between microbes and their hosts not only play a role in determining health and disease but also in emotions, thought, and behavior. Built environments greatly influence microbiome exposures because of their built-in highly specific microbiomes coproduced with myriad metaorganisms including humans, pets, plants, rodents, and insects. Seemingly static built structures host complex ecologies of microorganisms that are only starting to be mapped. These microbial ecologies of built environments are directly and interdependently affected by social, spatial, and technological norms. Advances in technology have made these organisms visible and forced the scientific community and architects to rethink gene-environment and microbe interactions respectively. Thus, built environment design must consider the microbiome, and research involving host-microbiome interaction must consider the built-environment. This paradigm shift becomes increasingly important as evidence grows that contemporary built environments are steadily reducing the microbial diversity essential for human health, well-being, and resilience while accelerating the symptoms of human chronic diseases including environmental allergies, and other more life-altering diseases. New models of design are required to balance maximizing exposure to microbial diversity while minimizing exposure to human-associated diseases. Sustained trans-disciplinary research across time (evolutionary, historical, and generational) and space (cultural and geographical) is needed to develop experimental design protocols that address multigenerational multispecies health and health equity in built environments.


Asunto(s)
Entorno Construido , Microbiota , Humanos , Microbiota/fisiología , Animales
2.
J Periodontol ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655661

RESUMEN

BACKGROUND: Studies on the impact of intermittent fasting on periodontal health are still scarce. Thus, this study evaluated the effects of long-term intermittent fasting on periodontal health and the subgingival microbiota. METHODS: This pilot study was part of a nonrandomized controlled trial. Overweight/obese participants (n = 14) entered an intermittent fasting program, specifically the 5:2 diet, in which they restricted caloric intake to about a quarter of the normal total daily caloric expenditure for two nonconsecutive days/week. Subjects underwent a thorough clinical and laboratory examination, including an assessment of their periodontal condition, at baseline and 6 months after starting the diet. Additionally, subgingival microbiota was assessed by 16S rRNA gene sequencing. RESULTS: After 6 months of intermittent fasting, weight, body mass index, C-reactive protein, hemoglobin A1c (HbA1c), and the cholesterol profile improved significantly (p < 0.05). Moreover, significant reductions were observed in bleeding on probing (p = 0.01) and the presence of shallow periodontal pockets after fasting (p < 0.001), while no significant change was seen in plaque index (p = 0.14). While we did not observe significant changes in α- or ß-diversity of the subgingival microbiota related to dietary intervention (p > 0.05), significant differences were seen in the abundances of several taxa among individuals exhibiting ≥60% reduction (good responders) in probing pocket depth of 4-5 mm compared to those with <60% reduction (bad responders). CONCLUSION: Intermittent fasting decreased systemic and periodontal inflammation. Although the subgingival microbiota was unaltered by this intervention, apparent taxonomic variability was observed between good and bad responders.

3.
Microorganisms ; 12(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38674663

RESUMEN

Gut microbes supporting body growth are known but the mechanisms are less well documented. Using the microbial tryptophan metabolite indole, known to regulate prokaryotic cell division and metabolic stress conditions, we mono-colonized germ-free (GF) mice with indole-producing wild-type Escherichia coli (E. coli) or tryptophanase-encoding tnaA knockout mutant indole-non-producing E. coli. Indole mutant E. coli mice showed multiorgan growth retardation and lower levels of glycogen, cholesterol, triglycerides, and glucose, resulting in an energy deficiency despite increased food intake. Detailed analysis revealed a malfunctioning intestine, enlarged cecum, and reduced numbers of enterochromaffin cells, correlating with a metabolic phenotype consisting of impaired gut motility, diminished digestion, and lower energy harvest. Furthermore, indole mutant mice displayed reduction in serum levels of tricarboxylic acid (TCA) cycle intermediates and lipids. In stark contrast, a massive increase in serum melatonin was observed-frequently associated with accelerated oxidative stress and mitochondrial dysfunction. This observational report discloses functional roles of microbe-derived indoles regulating multiple organ functions and extends our previous report of indole-linked regulation of adult neurogenesis. Since indoles decline by age, these results imply a correlation with age-linked organ decline and levels of indoles. Interestingly, increased levels of indole-3-acetic acid, a known indole metabolite, have been shown to correlate with younger biological age, further supporting a link between biological age and levels of microbe-derived indole metabolites. The results presented in this resource paper will be useful for the future design of food intervention studies to reduce accelerated age-linked organ decline.

4.
Gut Microbes ; 15(2): 2283911, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010368

RESUMEN

The complex symbiotic relationship between the mammalian body and gut microbiome plays a critical role in the health outcomes of offspring later in life. The gut microbiome modulates virtually all physiological functions through direct or indirect interactions to maintain physiological homeostasis. Previous studies indicate a link between maternal/early-life gut microbiome, brain development, and behavioral outcomes relating to social cognition. Here we present direct evidence of the role of the gut microbiome in brain development. Through magnetic resonance imaging (MRI), we investigated the impact of the gut microbiome on brain organization and structure using germ-free (GF) mice and conventionalized mice, with the gut microbiome reintroduced after weaning. We found broad changes in brain volume in GF mice that persist despite the reintroduction of gut microbes at weaning. These data suggest a direct link between the maternal gut or early-postnatal microbe and their impact on brain developmental programming.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Encéfalo , Cabeza , Mamíferos
5.
EMBO J ; 42(21): e112963, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37743772

RESUMEN

The large intestine harbors microorganisms playing unique roles in host physiology. The beneficial or detrimental outcome of host-microbiome coexistence depends largely on the balance between regulators and responder intestinal CD4+ T cells. We found that ulcerative colitis-like changes in the large intestine after infection with the protist Blastocystis ST7 in a mouse model are associated with reduction of anti-inflammatory Treg cells and simultaneous expansion of pro-inflammatory Th17 responders. These alterations in CD4+ T cells depended on the tryptophan metabolite indole-3-acetaldehyde (I3AA) produced by this single-cell eukaryote. I3AA reduced the Treg subset in vivo and iTreg development in vitro by modifying their sensing of TGFß, concomitantly affecting recognition of self-flora antigens by conventional CD4+ T cells. Parasite-derived I3AA also induces over-exuberant TCR signaling, manifested by increased CD69 expression and downregulation of co-inhibitor PD-1. We have thus identified a new mechanism dictating CD4+ fate decisions. The findings thus shine a new light on the ability of the protist microbiome and tryptophan metabolites, derived from them or other sources, to modulate the adaptive immune compartment, particularly in the context of gut inflammatory disorders.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Eucariontes/metabolismo , Triptófano/metabolismo , Linfocitos T Reguladores
6.
EMBO Mol Med ; 15(3): e17324, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36843560

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating neuromuscular degenerative disease with no known cure to date. In recent years, the hypothesis of a "gut-muscle axis" has emerged suggesting that bidirectional communication between the gut microbiota and the muscular system regulates the muscular function and may be perturbed in several muscular disorders. In addition, the excessive consumption of sugar and of lipid-rich processed food products are factors that further aggravate the phenotype for such diseases and accelerate biological aging. However, these unhealthy microbiota profiles can be reversed by individualized dietary changes to not only alter the microbiota composition but also to reset the production of microbial metabolites known to trigger beneficial effects typically associated with prolonged health span. Two recent studies (in this issue of EMBO Mol Med) highlight the interesting potential of microbiota-informed next-generation dietary intervention programs to be considered in genetically linked muscle disorders like DMD.


Asunto(s)
Disbiosis , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Músculo Esquelético/metabolismo
7.
Sci Adv ; 9(7): eabq1141, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791205

RESUMEN

The neurovascular unit (NVU) is composed of vascular cells, glial cells, and neurons. As a fundamental functional module in the central nervous system, the NVU maintains homeostasis in the microenvironment and the integrity of the blood-brain barrier. Disruption of the NVU and interactions among its components are involved in the pathophysiology of synucleinopathies, which are characterized by the pathological accumulation of α-synuclein. Neuroinflammation contributes to the pathophysiology of synucleinopathies, including Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. This review aims to summarize the neuroinflammatory response of glial cells and vascular cells in the NVU. We also review neuroinflammation in the context of the cross-talk between glial cells and vascular cells, between glial cells and pericytes, and between microglia and astroglia. Last, we discuss how α-synuclein affects neuroinflammation and how neuroinflammation influences the aggregation and spread of α-synuclein and analyze different properties of α-synuclein in synucleinopathies.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Humanos , alfa-Sinucleína , Sinucleinopatías/patología , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/patología , Neuronas/patología
8.
Clin Exp Rheumatol ; 41(8): 1578-1588, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36826808

RESUMEN

OBJECTIVES: The early gastrointestinal (GI) manifestation of systemic sclerosis (SSc) suggests a possible GI microbiota engagement in the pathophysiology and/or progression of SSc. Previous studies have revealed dysbiosis among Caucasian SSc patients. This study extends these findings to Asian SSc patients. METHODS: Adult SSc patients, stratified according to 1) on immunosuppressive (On-IS) drugs or 2) no immunosuppressive drugs (No-IS), and age-and-sex-matched healthy controls (HC) were recruited. Metagenomic sequencing of stool DNA was compared between SSc patients and HC, and between SSc (On-IS) and (No-IS) patients. Alpha and beta-diversity, taxonomic and functional profiling were evaluated. RESULTS: Twenty-three female SSc patients (12 On-IS; 11 No-IS; 5 diffuse and 18 limited SSc subtype) and 19 female HC, with median age of 54 years and 56 years, respectively, were recruited. Median SSc disease duration was 3.3 years. Alpha diversity was significantly higher in SSc versus HC (p=0.014) and in SSc (No-IS) versus HC (p=0.006). There was no significant difference in beta diversity between SSc and HC (p=0.307). At the phyla level, there were significantly increased abundance of Firmicutes and Actinobacteria in SSc versus HC, and reduced abundance of Bacteroidetes (all p<0.001). At the species level, there were significantly increased abundance of several Lactobacillus, Bifidobacterium, and Coprococcus species in SSc, and increased abundance of Odoribacter, Bacteroides and Prevotella species in HC. KEGG pathway analysis demonstrated distinct differences between SSc versus HC, and between SSc (No-IS) and SSc (On-IS). CONCLUSIONS: Using metagenomic sequencing, our study further underlines distinct alterations in microbiota profiling among Asian SSc patients.


Asunto(s)
Microbioma Gastrointestinal , Esclerodermia Limitada , Esclerodermia Sistémica , Adulto , Humanos , Femenino , Persona de Mediana Edad , Microbioma Gastrointestinal/genética , Heces , Esclerodermia Sistémica/diagnóstico , Esclerodermia Sistémica/microbiología , Bacterias/genética
9.
Appetite ; 180: 106361, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36332849

RESUMEN

Portion size selection is an indicator of appetite and within younger adults, is predicted by factors such as expected satiety, liking and motivations to achieve an ideal sensation of fullness (i.e., implicit satiety goals). Currently, there is limited research available on the determinants of portion size selection within older adults. Therefore, the current study aimed to examine the relationship between individual differences in implicit satiety goals, food-related expectations, and portion size selection in older adults. Free-living older adult Singaporeans (N = 115; Nmales = 62; age: M = 66.21 years, SD = 4.78, range = 60-83 years) participated as part of the Brain, Ageing, Microbiome, Muscle, Bone, and Exercise Study (BAMMBE). Participants completed questionnaires on their subjective requirements for experiencing different states of satiety and food-related expectations (i.e., liking, how filling) as well as a computerised portion size selection task. Using a multiple regression, we found that goals to feel comfortably full (B = 3.08, SE = 1.04, t = 2.96, p = .004) and to stop hunger (B = -2.25, SE = 0.82, t = -2.75, p = .007) significantly predicted larger portion size selection (R2 = 0.24, F(4,87) = 6.74, p < .001). Larger portion sizes (R2 = 0.53, F(5,90) = 20.58, p < .001) were also predicted by greater expected satiety (B = 0.47, SE = 0.09, t = 5.15, p < .001) and lower perceptions of how filling foods are (B = -2.92, SE = 0.77, t = -3.79, p < .001) but not liking (B = -0.09, SE = 0.91, t = -0.10, p = .925) or frequency (B = -18.42, SE = 16.91, t = -1.09, p = .279) of consumption of target foods. Comparing our findings to results of studies conducted with younger adults suggests the influence of factors such as satiety related goals on portion size selection may change with ageing while the influence of other factors (e.g., expected satiety/fullness delivered by foods) may remain consistent. These findings may inform future strategies to increase/decrease portion size accordingly to ensure older adults maintain an appropriate healthy weight.


Asunto(s)
Ejercicio Físico , Humanos , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Encuestas y Cuestionarios
10.
Biochem Biophys Res Commun ; 633: 88-91, 2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36344172

RESUMEN

The human gut microbiota comprises of trillions of micro-organisms in the gut some which secrete metabolites that play a pivotal role in supporting optimal body and organ functions. These dynamic and malleable gut microbes share a bidirectional relationship with their hosts that supports health in an age- and sex-dependent manner. Disruption of the gut microbiota or decrease in their diversity and richness due to unhealthy changes in lifestyle, diet or social disconnection, always results in unwanted outcomes on the host health which fuel chronic disease symptoms including neurodegenerative diseases. Thus, impairment of gut microbiota composition, results in organ decline that accelerates an individual's biological ageing. Here we review evidence supporting the bidirectional relationships between the gut microbiota and biological ageing.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Humanos , Envejecimiento , Dieta
12.
United European Gastroenterol J ; 9(9): 1057-1065, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34431591

RESUMEN

OBJECTIVE: Irritable bowel syndrome (IBS) is a chronic disorder associated with an abnormal gastrointestinal microbiome. Microbiome-host interactions are known to influence organ function including in the central nervous system; thus, we sought to identify whether IBS may be a risk factor for the development of glaucoma. DESIGN: Two prospective cohort studies. SUBJECTS: The 1958 United Kingdom Birth Cohort (UKBC; 9091 individuals) and the Danish National Registry of Patients (DNRP; 62,541 individuals with IBS and 625,410 matched general population cohort members). METHODS: In the UKBC, participants were surveyed throughout life (including at ages 42 and 50). The DNRP contains records of hospital-based contacts and prescription data from the national prescription database. MAIN OUTCOME MEASURE: The main outcome measure was incidence of glaucoma. In the UKBC, incident glaucoma at age 50 (n = 48) was determined through comparison of survey responses at ages 42 and 50 years. In the DNRP, glaucoma was assessed by hospital diagnosis (n = 1510), glaucoma surgery (n = 582) and initiation of glaucoma medications (n = 1674). RESULTS: In the UKBC, the odds ratio (OR) of developing glaucoma between ages 42 and 50 in persons with a chronic IBS diagnosis was increased [OR: 5.84, 95% confidence interval (CI): 2.26-15.13]. People with an IBS diagnosis in the DNRP had a hazard ratio (HR) of 1.35 for developing physician-diagnosed glaucoma (95% CI: 1.16-1.56), an HR of 1.35 for undergoing glaucoma surgery (95% CI: 1.06-1.70) and an HR of 1.19 for initiating glaucoma medication (95% CI: 1.03-1.38). CONCLUSIONS: In two large European cohort studies, IBS is a risk factor for glaucoma.


Asunto(s)
Glaucoma/complicaciones , Síndrome del Colon Irritable/complicaciones , Adulto , Anciano , Anciano de 80 o más Años , Dinamarca/epidemiología , Femenino , Glaucoma/epidemiología , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , Reino Unido/epidemiología
13.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34210797

RESUMEN

While modulatory effects of gut microbes on neurological phenotypes have been reported, the mechanisms remain largely unknown. Here, we demonstrate that indole, a tryptophan metabolite produced by tryptophanase-expressing gut microbes, elicits neurogenic effects in the adult mouse hippocampus. Neurogenesis is reduced in germ-free (GF) mice and in GF mice monocolonized with a single-gene tnaA knockout (KO) mutant Escherichia coli unable to produce indole. External administration of systemic indole increases adult neurogenesis in the dentate gyrus in these mouse models and in specific pathogen-free (SPF) control mice. Indole-treated mice display elevated synaptic markers postsynaptic density protein 95 and synaptophysin, suggesting synaptic maturation effects in vivo. By contrast, neurogenesis is not induced by indole in aryl hydrocarbon receptor KO (AhR-/-) mice or in ex vivo neurospheres derived from them. Neural progenitor cells exposed to indole exit the cell cycle, terminally differentiate, and mature into neurons that display longer and more branched neurites. These effects are not observed with kynurenine, another AhR ligand. The indole-AhR-mediated signaling pathway elevated the expression of ß-catenin, Neurog2, and VEGF-α genes, thus identifying a molecular pathway connecting gut microbiota composition and their metabolic function to neurogenesis in the adult hippocampus. Our data have implications for the understanding of mechanisms of brain aging and for potential next-generation therapeutic opportunities.


Asunto(s)
Envejecimiento/metabolismo , Microbioma Gastrointestinal , Neurogénesis , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Animales , Indoles/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Células-Madre Neurales/metabolismo
14.
Front Microbiol ; 12: 659465, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995322

RESUMEN

In the last 150 years, we have seen a significant increase in average life expectancy, associated with a shift from infectious to non-communicable diseases. The rising incidence of these diseases, for which age is often the largest risk factor, highlights the need for contemporary societies to improve healthy ageing for their growing silver generations. As ageing is an inevitable, non-reversing and highly individualised process, we need to better understand how non-genetic factors like diet choices and commensal gut microbes can modulate the biology of ageing. In this review, we discuss how geographical and ethnic variations influence habitual dietary patterns, nutrient structure, and gut microbial profiles with potential impact on the human healthspan. Several gut microbial genera have been associated with healthy elderly populations but are highly variable across populations. It seems unlikely that a universal pro-longevity gut microbiome exists. Rather, the optimal microbiome appears to be conditional on the microbial functionality acting on regional- and ethnicity-specific trends driven by cultural food context. We also highlight dietary and microbial factors that have been observed to elicit individual and clustered biological responses. Finally, we identify next generation avenues to modify otherwise fixed host functions and the individual ageing trajectory by manipulating the malleable gut microbiome with regionally adapted, personalised food intervention regimens targeted at prolonging human healthspan.

15.
J Proteome Res ; 20(6): 3315-3329, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34009992

RESUMEN

We present a multivariate metabotyping approach to assess the functional recovery of nonhospitalized COVID-19 patients and the possible biochemical sequelae of "Post-Acute COVID-19 Syndrome", colloquially known as long-COVID. Blood samples were taken from patients ca. 3 months after acute COVID-19 infection with further assessment of symptoms at 6 months. Some 57% of the patients had one or more persistent symptoms including respiratory-related symptoms like cough, dyspnea, and rhinorrhea or other nonrespiratory symptoms including chronic fatigue, anosmia, myalgia, or joint pain. Plasma samples were quantitatively analyzed for lipoproteins, glycoproteins, amino acids, biogenic amines, and tryptophan pathway intermediates using Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry. Metabolic data for the follow-up patients (n = 27) were compared with controls (n = 41) and hospitalized severe acute respiratory syndrome SARS-CoV-2 positive patients (n = 18, with multiple time-points). Univariate and multivariate statistics revealed variable patterns of functional recovery with many patients exhibiting residual COVID-19 biomarker signatures. Several parameters were persistently perturbed, e.g., elevated taurine (p = 3.6 × 10-3 versus controls) and reduced glutamine/glutamate ratio (p = 6.95 × 10-8 versus controls), indicative of possible liver and muscle damage and a high energy demand linked to more generalized tissue repair or immune function. Some parameters showed near-complete normalization, e.g., the plasma apolipoprotein B100/A1 ratio was similar to that of healthy controls but significantly lower (p = 4.2 × 10-3) than post-acute COVID-19 patients, reflecting partial reversion of the metabolic phenotype (phenoreversion) toward the healthy metabolic state. Plasma neopterin was normalized in all follow-up patients, indicative of a reduction in the adaptive immune activity that has been previously detected in active SARS-CoV-2 infection. Other systemic inflammatory biomarkers such as GlycA and the kynurenine/tryptophan ratio remained elevated in some, but not all, patients. Correlation analysis, principal component analysis (PCA), and orthogonal-partial least-squares discriminant analysis (O-PLS-DA) showed that the follow-up patients were, as a group, metabolically distinct from controls and partially comapped with the acute-phase patients. Significant systematic metabolic differences between asymptomatic and symptomatic follow-up patients were also observed for multiple metabolites. The overall metabolic variance of the symptomatic patients was significantly greater than that of nonsymptomatic patients for multiple parameters (χ2p = 0.014). Thus, asymptomatic follow-up patients including those with post-acute COVID-19 Syndrome displayed a spectrum of multiple persistent biochemical pathophysiology, suggesting that the metabolic phenotyping approach may be deployed for multisystem functional assessment of individual post-acute COVID-19 patients.


Asunto(s)
COVID-19 , COVID-19/complicaciones , Humanos , Lipoproteínas , Espectroscopía de Resonancia Magnética , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
16.
Brain ; 144(9): 2571-2593, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33856024

RESUMEN

Parkinson's disease is a common neurodegenerative disorder in which gastrointestinal symptoms may appear prior to motor symptoms. The gut microbiota of patients with Parkinson's disease shows unique changes, which may be used as early biomarkers of disease. Alterations in the gut microbiota composition may be related to the cause or effect of motor or non-motor symptoms, but the specific pathogenic mechanisms are unclear. The gut microbiota and its metabolites have been suggested to be involved in the pathogenesis of Parkinson's disease by regulating neuroinflammation, barrier function and neurotransmitter activity. There is bidirectional communication between the enteric nervous system and the CNS, and the microbiota-gut-brain axis may provide a pathway for the transmission of α-synuclein. We highlight recent discoveries about alterations to the gut microbiota in Parkinson's disease and focus on current mechanistic insights into the microbiota-gut-brain axis in disease pathophysiology. Moreover, we discuss the interactions between the production and transmission of α-synuclein and gut inflammation and neuroinflammation. In addition, we draw attention to diet modification, the use of probiotics and prebiotics and faecal microbiota transplantation as potential therapeutic approaches that may lead to a new treatment paradigm for Parkinson's disease.


Asunto(s)
Eje Cerebro-Intestino/fisiología , Disbiosis/metabolismo , Disbiosis/terapia , Microbioma Gastrointestinal/fisiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Eje Cerebro-Intestino/efectos de los fármacos , Disbiosis/inmunología , Trasplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Enfermedad de Parkinson/inmunología , Prebióticos/administración & dosificación , Probióticos/administración & dosificación
17.
J Proteome Res ; 20(5): 2796-2811, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33724837

RESUMEN

We performed quantitative metabolic phenotyping of blood plasma in parallel with cytokine/chemokine analysis from participants who were either SARS-CoV-2 (+) (n = 10) or SARS-CoV-2 (-) (n = 49). SARS-CoV-2 positivity was associated with a unique metabolic phenotype and demonstrated a complex systemic response to infection, including severe perturbations in amino acid and kynurenine metabolic pathways. Nine metabolites were elevated in plasma and strongly associated with infection (quinolinic acid, glutamic acid, nicotinic acid, aspartic acid, neopterin, kynurenine, phenylalanine, 3-hydroxykynurenine, and taurine; p < 0.05), while four metabolites were lower in infection (tryptophan, histidine, indole-3-acetic acid, and citrulline; p < 0.05). This signature supports a systemic metabolic phenoconversion following infection, indicating possible neurotoxicity and neurological disruption (elevations of 3-hydroxykynurenine and quinolinic acid) and liver dysfunction (reduction in Fischer's ratio and elevation of taurine). Finally, we report correlations between the key metabolite changes observed in the disease with concentrations of proinflammatory cytokines and chemokines showing strong immunometabolic disorder in response to SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Quinurenina , Aminas , Citocinas , Humanos , SARS-CoV-2
18.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33472859

RESUMEN

The COVID-19 pandemic has the potential to affect the human microbiome in infected and uninfected individuals, having a substantial impact on human health over the long term. This pandemic intersects with a decades-long decline in microbial diversity and ancestral microbes due to hygiene, antibiotics, and urban living (the hygiene hypothesis). High-risk groups succumbing to COVID-19 include those with preexisting conditions, such as diabetes and obesity, which are also associated with microbiome abnormalities. Current pandemic control measures and practices will have broad, uneven, and potentially long-term effects for the human microbiome across the planet, given the implementation of physical separation, extensive hygiene, travel barriers, and other measures that influence overall microbial loss and inability for reinoculation. Although much remains uncertain or unknown about the virus and its consequences, implementing pandemic control practices could significantly affect the microbiome. In this Perspective, we explore many facets of COVID-19-induced societal changes and their possible effects on the microbiome, and discuss current and future challenges regarding the interplay between this pandemic and the microbiome. Recent recognition of the microbiome's influence on human health makes it critical to consider both how the microbiome, shaped by biosocial processes, affects susceptibility to the coronavirus and, conversely, how COVID-19 disease and prevention measures may affect the microbiome. This knowledge may prove key in prevention and treatment, and long-term biological and social outcomes of this pandemic.


Asunto(s)
COVID-19/microbiología , Hipótesis de la Higiene , Microbiota , Anciano , Antiinfecciosos/uso terapéutico , COVID-19/mortalidad , Ingestión de Alimentos , Femenino , Humanos , Lactante , Control de Infecciones/métodos , Masculino , Microbiota/efectos de los fármacos , Distanciamiento Físico , Embarazo
19.
Proteomics ; 20(5-6): e1800419, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31994831

RESUMEN

Microorganisms that colonize the gastrointestinal tract, collectively known as the gut microbiota, are known to produce small molecules and metabolites that significantly contribute to host intestinal development, functions, and homeostasis. Emerging insights from microbiome research reveal that gut microbiota-derived signals and molecules influence another key player maintaining intestinal homeostasis-the intestinal stem cell niche, which regulates epithelial self-renewal. In this review, the literature on gut microbiota-host crosstalk is surveyed, highlighting the effects of gut microbial metabolites on intestinal stem cells. The production of various classes of metabolites, their actions on intestinal stem cells are discussed and, finally, how the production and function of metabolites are modulated by aging and dietary intake is commented upon.


Asunto(s)
Envejecimiento , Microbioma Gastrointestinal , Mucosa Intestinal/citología , Células Madre/citología , Animales , Bacterias/metabolismo , Autorrenovación de las Células , Homeostasis , Humanos , Mucosa Intestinal/fisiología , Intestinos/citología , Intestinos/fisiología , Transducción de Señal , Células Madre/metabolismo
20.
Neurobiol Dis ; 135: 104744, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31931139

RESUMEN

Structural and molecular myelination deficits represent early pathological features of Huntington disease (HD). Recent evidence from germ-free (GF) animals suggests a role for microbiota-gut-brain bidirectional communication in the regulation of myelination. In this study, we aimed to investigate the impact of microbiota on myelin plasticity and oligodendroglial population dynamics in the mixed-sex BACHD mouse model of HD. Ultrastructural analysis of myelin in the corpus callosum revealed alterations of myelin thickness in BACHD GF compared to specific-pathogen free (SPF) mice, whereas no differences were observed between wild-type (WT) groups. In contrast, myelin compaction was altered in all groups when compared to WT SPF animals. Levels of myelin-related proteins were generally reduced, and the number of mature oligodendrocytes was decreased in the prefrontal cortex under GF compared to SPF conditions, regardless of genotype. Minor differences in commensal bacteria at the family and genera levels were found in the gut microbiota of BACHD and WT animals housed in standard living conditions. Our findings indicate complex effects of a germ-free status on myelin-related characteristics, and highlight the adaptive properties of myelination as a result of environmental manipulation.


Asunto(s)
Enfermedad de Huntington/microbiología , Proteínas de la Mielina/metabolismo , Vaina de Mielina/patología , Sustancia Blanca/microbiología , Animales , Bacterias/aislamiento & purificación , Cuerpo Calloso/metabolismo , Cuerpo Calloso/microbiología , Modelos Animales de Enfermedad , Enfermedad de Huntington/patología , Ratones Transgénicos , Vaina de Mielina/metabolismo , Plasticidad Neuronal/fisiología , Oligodendroglía/metabolismo , Corteza Prefrontal/metabolismo , Sustancia Blanca/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...